Answer :
Answer:
The last two bearings are
49.50° and 104.02°
Explanation:
Applying the Law of cosine (refer to the figure attached):
we have
x² = y² + z² - 2yz × cosX
here,
x, y and z represents the lengths of sides opposite to the angels X,Y and Z.
Thus we have,
[tex]cos X=\frac{x^2-y^2-z^2}{-2yz}[/tex]
or
[tex]cos X=\frac{y^2 + z^2-x^2}{2yz}[/tex]
substituting the values in the equation we get,
[tex]cos X=\frac{2900^2 + 3700^2-1700^2}{2\times 2900\times 3700}[/tex]
or
[tex]cos X=0.8951[/tex]
or
X = 26.47°
similarly,
[tex]cos Y=\frac{1700^2 + 3700^2-2900^2}{2\times 1700\times 3700}[/tex]
or
[tex]cos Y=0.649[/tex]
or
Y = 49.50°
Consequently, the angel Z = 180° - 49.50 - 26.47 = 104.02°
The bearing of 2 last legs of race are angels Y and Z.
