Answer :
Answer:
[tex]v^{2}_{2}=v^{2}_{1}+\frac{v^{2}Sin^{2}\theta }{g^{2}}[/tex]
Explanation:
Case I:
initial velocity, u = 0 m/s
Final velocity, v' = v Sinθ /g
Height = h
acceleration = g
Use third equation of motion, we get
[tex]v'^{2}=u^{2}+2as[/tex]
[tex]\left ( \frac{vSin\theta }{g} \right )^{2}=0^{2}+2gh[/tex]
[tex]h = \frac{v^{2}Sin^{2}\theta }{2g^{3}}[/tex] . ... (1)
Case II:
initial velocity, u = v1
Final velocity, v = v2
height = h
acceleration due to gravity = g
Use third equation of motion, we get
[tex]v^{2}=u^{2}+2as[/tex]
[tex]v^{2}_{2}=v^{2}_{1}+2gh[/tex]
Substitute the value of h from equation (1) ,we get
[tex]v^{2}_{2}=v^{2}_{1}+2g\frac{v^{2}Sin^{2}\theta }{2g^{3}}[/tex]
[tex]v^{2}_{2}=v^{2}_{1}+\frac{v^{2}Sin^{2}\theta }{g^{2}}[/tex]