brudder813
Answered

if ( First Image) and (Second Image), then which is true?

det(A) = det(B)
det(A) = –det(B)
det\(A) /= 0 and det(B) = 0
det(A) = 0 and det(B) =/0

if ( First Image) and (Second Image), then which is true? det(A) = det(B) det(A) = –det(B) det\(A) /= 0 and det(B) = 0 det(A) = 0 and det(B) =/0 class=
if ( First Image) and (Second Image), then which is true? det(A) = det(B) det(A) = –det(B) det\(A) /= 0 and det(B) = 0 det(A) = 0 and det(B) =/0 class=

Answer :

Moalhazaa

Answer:

The Second one

Step-by-step explanation:

In the picture above.

I hope that it's a clear solution.

${teks-lihat-gambar} Moalhazaa
MrRoyal

The question is an illustration of matrix determinants.

The true statement is (b) [tex]\mathbf{|A| = -|B|}[/tex]

The matrices are given as:

[tex]A = \left[\begin{array}{ccc}3&-1&5\\2&9&3\\5&3&1\end{array}\right][/tex]  and [tex]B = \left[\begin{array}{ccc}5&3&1\\2&9&3\\3&-1&5\end{array}\right][/tex]

Next, calculate the determinants

[tex]\mathbf{|A| = 3(9\times 1 - 3 \times 3) + 1(2 \times 1 - 3 \times 5) + 5(2 \times 3 - 9 \times 5)}[/tex]

[tex]\mathbf{|A| = -208}[/tex]

[tex]\mathbf{|B| = 5(9\times 5 + 3 \times 1) - 3(2 \times 5 - 3 \times 3) + 1(2 \times -1 - 9 \times 3)}[/tex]

[tex]\mathbf{|B| = 208}[/tex]

Substitute [tex]\mathbf{|B| = 208}[/tex] in [tex]\mathbf{|A| = -208}[/tex]

[tex]\mathbf{|A| = -|B|}[/tex]

Hence, the true statement is (b) [tex]\mathbf{|A| = -|B|}[/tex]

Read more about matrix determinants at:

https://brainly.com/question/4470545

Other Questions