Which trigonometric ratios are correct for triangle DEF? Select three options.


sin(D) = StartFraction 24 Over 25 EndFraction

cos(E) = StartFraction 7 Over 25 EndFraction
tan(D) = StartFraction 24 Over 7 EndFraction
sin(E) = StartFraction 7 Over 25 EndFraction
tan(D) = StartFraction 7 Over 24 EndFraction

Answer :

Answer: I think the answer is B

Step-by-step explanation:

Answer:

The correct options are 1, 3 and 4.

Step-by-step explanation:

Consider the below figure attached with this question.

From the figure it is clear that DF = 7 units and EF = 24 units.

According to the Pythagoras theorem, in a right angled triangle

[tex]hypotenuse^2=perpendicular^2+base^2[/tex]

Using Pythagoras theorem, we get

[tex]D E^2=E F^2+D F^2[/tex]

[tex]D E^2=24^2+7^2[/tex]

[tex]D E^2=625[/tex]

Taking square root on both sides.

[tex]D E=25[/tex]

In a right angle triangle

[tex]\sin \theta = \dfrac{opposite}{hypotenuse}[/tex]

[tex]\cos \theta = \dfrac{adjacent}{hypotenuse}[/tex]

[tex]\tan \theta = \dfrac{opposite}{adjacent}[/tex]

Using these ratio we get

[tex]\sin (D)=\dfrac{EF}{DE}=\dfrac{24}{25}[/tex]

[tex]\cos (E)=\dfrac{EF}{DE}=\dfrac{24}{25}[/tex]

[tex]\tan (D)=\dfrac{EF}{DF}=\dfrac{24}{7}[/tex]

[tex]\sin (E)=\dfrac{DF}{DE}=\dfrac{7}{25}[/tex]

Therefore, the correct options are 1, 3 and 4.

${teks-lihat-gambar} erinna

Other Questions