Answer:
2) a.[tex]\frac{4}{11} > \frac{5}{14}[/tex]
2) b. [tex]-\frac{3}{7} >-\frac{4}{9}[/tex]
Step-by-step explanation:
2) a. Fraction [tex]\frac{4}{11}[/tex] can be written as [tex]\frac{4 \times 14}{11\times 14} = \frac{56}{11\times 14}[/tex] ....... (1)
Again, fraction [tex]\frac{5}{14}[/tex] can be written as [tex]\frac{5 \times 11}{14 \times 11}= \frac{55}{14 \times 11}[/tex] ........ (2)
Now, comparing expressions (1) and (2) we can say
[tex]\frac{56}{11\times 14}>\frac{55}{14 \times 11}[/tex]
i.e. [tex]\frac{4}{11} > \frac{5}{14}[/tex]
2) b. Fraction [tex]\frac{3}{17}[/tex] can be written as [tex]\frac{3 \times 9}{7\times 9} = \frac{27}{7\times 9}[/tex] ....... (3)
Again, fraction [tex]\frac{4}{9}[/tex] can be written as [tex]\frac{4 \times 7}{9 \times 7}= \frac{28}{9 \times 7}[/tex] ........ (4)
Now, comparing expressions (3) and (4) we can say
[tex]\frac{28}{9\times 7}>\frac{27}{7 \times 9}[/tex]
i.e. [tex]\frac{4}{9} > \frac{3}{7}[/tex]
i.e. [tex]-\frac{4}{9} < -\frac{3}{7}[/tex] {Since multiplication with a negative number on both sides of an inequality will change sign of the inequality.}
i.e. [tex]-\frac{3}{7} >-\frac{4}{9}[/tex]
(Answer)