Answer :
Answer:
[tex]\displaystyle \int {x^3e^{x^4}} \, dx = \frac{e^{x^4}}{4} + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {x^3e^{x^4}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = x^4[/tex]
- [u] Basic Power Rule: [tex]\displaystyle du = 4x^3 \ dx[/tex]
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {x^3e^{x^4}} \, dx = \frac{1}{4} \int {4x^3e^{x^4}} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {x^3e^{x^4}} \, dx = \frac{1}{4} \int {e^{u}} \, dx[/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int {x^3e^{x^4}} \, dx = \frac{e^{u}}{4} + C[/tex]
- [u] Back-Substitute: [tex]\displaystyle \int {x^3e^{x^4}} \, dx = \frac{e^{x^4}}{4} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration