Answer :

lublana

Answer:

[tex]5.796\times 10^{-29}m^3[/tex]

Step-by-step explanation:

Atomic radius of metal=0.137nm=[tex]0.137\times 10^{-9}[/tex]m

[tex]1nm=10^{-9}m[/tex]

Structure is  FCC

We know that

The relation between edge length and radius  in FCC structure

[tex]a=2\sqrt 2r[/tex]

Where a=Edge length=Side

r=Radius

Using the relation

[tex]a=2\sqrt 2\times 0.137\times 10^{-9}=0.387\times 10^{-9}m[/tex]

We know that

Volume of cube=[tex](side)^3[/tex]

Using the formula

Volume of unit cell=[tex](0.387\times 10^{-9})^3=5.796\times 10^{-29} m^3[/tex]

If the atomic radius of a metal that has the face-centered cubic crystal structure is 0.137 nm, The volume of its unit cell is

[tex]\rm =5.796\times 10^{-29}m^3[/tex]

Given :  Cubic crystal structure = 0.137 nm

To find : The volume of its unit cell.

According to the question,

Atomic Radius of metal=0.137nmm

            i.e. [tex]\rm =0.137 \times 10^{-9} m\\\\\rm 1 \;nm= 10^{-9} m[/tex]

We know that structure is in face-centered cubic crystal.

Now,

The relation between the Edge length and Radius in face-centered cubic crystal structure will be

                         → [tex]\rm a=2\sqrt{2r}[/tex]

Where, a = Edge length

            r = Radius

Now, we will use the relation here,

        [tex]\rm a=2\sqrt{2} \times 0.137 \times 10^{-9}m \\\\\rm a=0.387 \times 10^{-9} m[/tex]

Hence, Volume of cube = [tex]\rm (Edge\; length^{3} )[/tex]

Now we will apply the formula and on further solving we get,

           

        [tex]\rm Volume \;of\; unit\; cell = (0.387 \times 10^{-9})^3\\\\\rm Volume \;of\; unit\; cell = \rm =5.796\times 10^{-29}m^3[/tex]

Therefore, The volume of its unit cell [tex]\rm =5.796\times 10^{-29}m^3[/tex]

Learn more about Volumes here : https://brainly.com/question/25943063

Other Questions