For a continuous random variable X, P(20 ≤ X ≤ 40) = 0.15 and P(X > 40) = 0.16. Calculate the following probabilities. (Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 2 decimal places.)

Answer :

Answer:

For a continuous random variable X, P(20 ≤ X ≤ 40) = 0.15 and P(X > 40) = 0.16.

Step-by-step explanation:

Here, P(x > 40) = 0.16

a). P(x < 40) = 1 - P(x > 40)

                   =  1 - 0.16

                    = 0.84

b). P(x < 20) = 1 - [tex]P(x\geq 20)[/tex]

                    = 1 - {P(20 ≤ X ≤ 40) + P(X > 40)}

                    = 1 - (0.15 + 0.16 )  

                    = 1 - 0.31

                    = 0. 69

c). P(x = 40) = 0; The probability that a continuous variable assume a particular value is zero.

MrRoyal

Probabilities are used to determine the chances of an event.

The probabilities are:

  • [tex]\mathbf{P(x < 40) = 0.84}[/tex]
  • [tex]\mathbf{P(x < 20) = 0.69}[/tex]
  • [tex]\mathbf{P(x = 40) = 0}[/tex]

The given parameters are:

[tex]\mathbf{P(20 \le x \le 40) = 0.15}[/tex]

[tex]\mathbf{P(x > 40) = 0.16}[/tex]

(a) P (X < 40)

To do this, we make use of the following compliment rule.

[tex]\mathbf{P(x < 40) = 1 - P(x > 40) - P(x = 40)}[/tex]

Because the probability is continuous, then:

[tex]\mathbf{P(x = 40) = 0}[/tex]

So, we have=:

[tex]\mathbf{P(x < 40) = 1 - 0.16 - 0}[/tex]

[tex]\mathbf{P(x < 40) = 0.84}[/tex]

(b) P (X < 20)

To do this, we make use of the following compliment rule.

[tex]\mathbf{P(x < 20) = 1 - P(20 \le x \le 40) - P(x > 40)}[/tex]

So, we have=:

[tex]\mathbf{P(x < 20) = 1 - 0.15 - 0.16}[/tex]

[tex]\mathbf{P(x < 20) = 0.69}[/tex]

(c) P(x = 40)

In (a), we have:

[tex]\mathbf{P(x = 40) = 0}[/tex]

Read more about probabilities at:

https://brainly.com/question/11234923

Other Questions