Answer :

Ashraf82

Answer:

m∠KSM = 59.55°

Step-by-step explanation:

The formula of the lateral area of a cone is LA = [tex]\frac{1}{2}[/tex] Cl, where c is the circumference of the base and l is the slant height

The formula of the circumference of a circle is C = 2πr

From the figure

SO is the height of the cone

KM is the diameter of the base

SO⊥ KM

SK and SM are slant heights

We can use the trigonometry ratio in triangle SOK to find angle KSO, then multiply its measure by 2 to find the measure of ∠KSM, because m∠KSO is equal to m∠MSO

∵ LA =  [tex]\frac{1}{2}[/tex] Cl

∵ C = 2πr

∴ LA = [tex]\frac{1}{2}[/tex] (2πr) l

∴ LA = πrl

∵ LA = 156

- l is the side SK

∵ SK = 10 units

∴ l = 10

- Substitute the values of LA and l in the formula above

∵ 156 = 10πr

- Divide both sides by 10π

∴ [tex]\frac{156}{10\pi }[/tex] = r

∴ r = [tex]\frac{78}{5\pi }[/tex]

∵ sin(∠KSO) = [tex]\frac{OK}{SK}[/tex]

∵ OK is the radius of the base

∴ sin(∠KSO) = [tex]\frac{\frac{78}{5\pi }}{10}[/tex]

∴ sin(∠KSO) = [tex]\frac{39}{25\pi }[/tex]

- Use [tex]sin^{-1}[/tex] to find m∠KSO

∴ ∠KSO = [tex]sin^{-1}\frac{39}{25\pi }[/tex]

∴ ∠KSO = 29.77°

∵ m∠KSO = m∠MSO

∴ m∠KSM = 2 m∠KSO

∴ m∠KSM = 2(29.77°)

m∠KSM = 59.55°

Other Questions