Answer :
Answer:
minimum factor of safety for fatigue is = 1.5432
Explanation:
given data
AISI 1018 steel cold drawn as table
ultimate strength Sut = 63.800 kpsi
yield strength Syt = 53.700 kpsi
modulus of elasticity E = 29.700 kpsi
we get here
[tex]\sigma a[/tex] = [tex]\sqrt{(\sigma a \times kb)^2+3\times (za\times kt)^2}[/tex] ...........1
here kb and kt = 1 combined bending and torsion fatigue factor
put here value and we get
[tex]\sigma a[/tex] = [tex]\sqrt{(12 \times 1)^2+3\times (0\times 1)^2}[/tex]
[tex]\sigma a[/tex] = 12 kpsi
and
[tex]\sigma m[/tex] = [tex]\sqrt{(\sigma m \times kb)^2+3\times (zm\times kt)^2}[/tex] ...........2
put here value and we get
[tex]\sigma m[/tex] = [tex]\sqrt{(-0.9 \times 1)^2+3\times (10\times 1)^2}[/tex]
[tex]\sigma m[/tex] = 17.34 kpsi
now we apply here goodman line equation here that is
[tex]\frac{\sigma m}{Sut} + \frac{\sigma a}{Se} = \frac{1}{FOS}[/tex] ...................3
here Se = 0.5 × Sut
Se = 0.5 × 63.800 = 31.9 kspi
put value in equation 3 we get
[tex]\frac{17.34}{63.800} + \frac{12}{31.9} = \frac{1}{FOS}[/tex]
solve it we get
FOS = 1.5432
