Answer :
Answer:
[tex]Height = x \frac{x^3+3x^2+4}{x^3+3x^2+8}[/tex]
Step-by-step explanation:
[tex]Volume = Base \ Area\ * Height[/tex]
[tex]Height = \frac{Volume}{Base \ Area}[/tex]
Where [tex]Volume = x^4+4x^3+8x+4[/tex] and [tex]Area = x^3+3x^2+8[/tex]
Putting in the formula
[tex]Height = \frac{x^4 + 4x^3 + 3x^2 + 8x + 4}{x^3 + 3x^2 + 8}[/tex]
Doing long division, we get
[tex]Height = x + \frac{x^3+3x^2+4}{x^3+3x^2+8}[/tex]
[tex]Height = x \frac{x^3+3x^2+4}{x^3+3x^2+8}[/tex]
This is the simplifies form and it can't be further simplified.
Answer:
[tex]x +1 - \frac{4}{x^3 + 3x^2 + 8}[/tex]
Step-by-step explanation:
[tex]volume=base \: area \times height[/tex]
[tex]height=\frac{volume}{base \: area}[/tex]
[tex]\mathrm{Solve \: by \: long \: division.}[/tex]
[tex]h=\frac{(x^4 + 4x^3 + 3x^2 + 8x + 4)}{(x^3 + 3x^2 + 8)}[/tex]
[tex]h=x + \frac{x^3 + 3x^2 + 4}{x^3 + 3x^2 + 8}[/tex]
[tex]h=x +1 - \frac{4}{x^3 + 3x^2 + 8}[/tex]