Answer :

MrRoyal

Answer:

[tex]Mean = 69[/tex]

[tex]Mode = 66[/tex]

[tex]Median = 69[/tex]

Step-by-step explanation:

Given

The frequency table

Required

Determine the mean, median and mode

Calculating Mean

[tex]Mean = \frac{\sum fx}{\sum f}[/tex]

Where

fx = product of frequency and inches

f = frequency

So;

[tex]Mean = \frac{63 * 2 + 65 * 1 + 66 * 4 + 67 * 3 + 68 * 1 + 69 * 2 + 70 * 2 + 71 * 1 + 72 * 3 + 74 * 2 + 75 * 2}{2 + 1 + 4 + 3 + 1 + 2 + 2 + 1 + 3 + 2 + 2}[/tex]

[tex]Mean = \frac{1587}{23}[/tex]

[tex]Mean = 69[/tex]

Calculating Mode

[tex]Mode = 66[/tex]

Because it highest frequency of 4

Calculating Median

[tex]Median = \frac{\sum f}{2}th\ position[/tex]

[tex]Median = \frac{2 + 1 + 4 + 3 + 1 + 2 + 2 + 1 + 3 + 2 + 2}{2}th\ position[/tex]

[tex]Median = \frac{23}{2}th\ position[/tex]

[tex]Median = 11.5th\ position[/tex]

Approximate

[tex]Median = 12th\ position[/tex]

At this point we, need to get the cumulative frequency (CF)

Inches ---- Frequency ---- CF

63 -------------2------------------2

65 -------------1------------------3

66 -------------4------------------7

67 -------------3------------------10

68 -------------1------------------11

69 -------------2------------------13

70 -------------2------------------15

71 -------------1------------------16

72 -------------3------------------19

74 -------------2------------------21

75 -------------2------------------23

From the above table

Since the median fall in the 12th position, then we consider the following data

69 -------------2------------------13

because it has a CF greater than 12

Hence;

[tex]Median = 69[/tex]

Other Questions