Answer:
[tex]Mean = 69[/tex]
[tex]Mode = 66[/tex]
[tex]Median = 69[/tex]
Step-by-step explanation:
Given
The frequency table
Required
Determine the mean, median and mode
Calculating Mean
[tex]Mean = \frac{\sum fx}{\sum f}[/tex]
Where
fx = product of frequency and inches
f = frequency
So;
[tex]Mean = \frac{63 * 2 + 65 * 1 + 66 * 4 + 67 * 3 + 68 * 1 + 69 * 2 + 70 * 2 + 71 * 1 + 72 * 3 + 74 * 2 + 75 * 2}{2 + 1 + 4 + 3 + 1 + 2 + 2 + 1 + 3 + 2 + 2}[/tex]
[tex]Mean = \frac{1587}{23}[/tex]
[tex]Mean = 69[/tex]
Calculating Mode
[tex]Mode = 66[/tex]
Because it highest frequency of 4
Calculating Median
[tex]Median = \frac{\sum f}{2}th\ position[/tex]
[tex]Median = \frac{2 + 1 + 4 + 3 + 1 + 2 + 2 + 1 + 3 + 2 + 2}{2}th\ position[/tex]
[tex]Median = \frac{23}{2}th\ position[/tex]
[tex]Median = 11.5th\ position[/tex]
Approximate
[tex]Median = 12th\ position[/tex]
At this point we, need to get the cumulative frequency (CF)
Inches ---- Frequency ---- CF
63 -------------2------------------2
65 -------------1------------------3
66 -------------4------------------7
67 -------------3------------------10
68 -------------1------------------11
69 -------------2------------------13
70 -------------2------------------15
71 -------------1------------------16
72 -------------3------------------19
74 -------------2------------------21
75 -------------2------------------23
From the above table
Since the median fall in the 12th position, then we consider the following data
69 -------------2------------------13
because it has a CF greater than 12
Hence;
[tex]Median = 69[/tex]