Use the graph of f(x)=x^2 to find a number δ such that ∣x^2−1∣<0.1 whenever 0<|x−1|<δ.

Answer:
[tex]\delta=0.0333[/tex]
Step-by-step explanation:
[tex]|x^2-1}=|x-1||x+1|<0.1[/tex]
[tex]|x|-|1|<|x-1|<1[/tex]
[tex]|x|<2[/tex]
[tex]|x+1|<3[/tex]
Hence
[tex]|x-1|<\frac{0.1}{|x+1|}[/tex]
[tex]|x-1|<\frac{0.1}{3}=0.333 =\delta[/tex]
Hopefully you get what I meant!!