A helicopter goes straight up 500m from a landing pad. It then goes north 20m. Then it goes down 452m. a) What is the displacement of the helicopter?
Express as components of a vector.
x-component_____________________
y-component_____________________

b) What is the displacement of the helicopter? Express as a vector (magnitude and direction).

Answer_____________________

Answer :

Answer:

a

  x-component             [tex]20 \ m[/tex]

y-component     [tex]500 - 452 = 48 \ m[/tex]

b

 Magnitude [tex]d = 52 \ m[/tex]

direction is  [tex]\theta = 67.4^o[/tex]

Explanation:

From the question we are told that

   The first  vertical distance is  [tex]y_1 = 500 \ m[/tex]

    The  first horizontal distance  is  [tex]x = 20 \ m[/tex]

    The  second vertical distance is  [tex]y_2 = 452 \ m[/tex]

Generally the displacement is  

x-component             [tex]20 \ m[/tex]

y-component     [tex]500 - 452 = 48 \ m[/tex]

Generally the helicopters displacement is mathematically evaluated as  

       [tex]d = \sqrt{ x- component ^2 + y- component ^2 }[/tex]

      [tex]d = \sqrt{ 20t ^2 + 48 ^2 }[/tex]

      [tex]d = 52 \ m[/tex]

The  direction is the angle the displacement of the helicopter makes with the horizontal which is mathematically evaluated as

         [tex]\theta = tan ^{-1}[ \frac{48}{20}][/tex]

=>       [tex]\theta = tan ^{-1}[ 2.4 ][/tex]

=>      [tex]\theta = 67.4^o[/tex]

   

Other Questions