Answer :
Answer:
[tex]\mathbf{stress \ \sigma = 264.6 \ Mpa}[/tex]
Explanation:
From the concept of Hooke's Law,
[tex]E =\dfrac{ stress \ \sigma}{ strain \ \varepsilon}[/tex]
where;
[tex]strain \ \varepsilon = \dfrac{change \ in \ dimension }{original \ dimension}[/tex]
[tex]strain \ \varepsilon = \dfrac{7 \ mm }{4.75 \times 10^{3} \ mm}[/tex]
[tex]strain \ \varepsilon =0.00147368[/tex]
Recall:
[tex]E =\dfrac{ stress \ \sigma}{ strain \ \varepsilon}[/tex]
[tex]stress \ \sigma = E \times { strain \ \varepsilon}[/tex]
[tex]stress \ \sigma = 180 \times 10^{3} \ Mpa \times 0.00147[/tex]
[tex]\mathbf{stress \ \sigma = 264.6 \ Mpa}[/tex]
Thus, the stress in the pipe at the maximum allowable contraction = 264.6 Mpa