Answer :

Answer:

Step-by-step explanation:

Parameterize the ellipse as (acos∙,bsin∙). Take points P:=(acosp,bsinp) and Q:=(acosq,bsinq) on the ellipse, with midpoint M:=(P+Q)/2.

If |PQ|=2k, then

a2(cosp−cosq)2+b2(sinp−sinq)2=4k2

The coordinates of M are

xy==a2(cosp+cosq)b2(sinp+sinq)

Other Questions