An increase in temperature the kinetic energy and average speed of the gas particles. As a result, the pressure on the walls of the container . Answer Bank What temperature must a gas, initially at 10 ∘C, be brought to for the pressure to triple?

Answer :

Answer:

a

The pressure will increase

b

[tex]T_2 =  576^oC[/tex]

Explanation:

From the ideal gas law we have that

     [tex]PV  =  nRT[/tex]

We see that the temperature varies directly with the pressure so if there is an increase in temperature that pressure will increase

   The initial  temperature is [tex]T_i  =  10^oC = 10 + 273 =  283 \  K [/tex]

The objective of this solution is to obtain the temperature of the gas where the pressure is tripled

Now from the above equation given that nR and V  are constant  we have that

    [tex]\frac{P}{T}  =  constant[/tex]

=>  [tex]\frac{P_1}{T_1}  =\frac{P_2}{T_2}[/tex]

Let assume the initial  pressure is [tex]P_1 =  1 Pa[/tex]

So tripling it will result  to the pressure being [tex]P_2 =  3 Pa[/tex]

So

     [tex]\frac{1}{283}  =\frac{3}{T_2}[/tex]  

=>   [tex]T_2  =  3 *  283[/tex]

=>    [tex]T_2  =  3 *  283[/tex]

=>    [tex]T_2  = 849 \ K [/tex]

Converting back to [tex]^oC[/tex]

   [tex]T_2  =  849 -  273[/tex]

=>  [tex]T_2 =  576^oC[/tex]

Other Questions