Answer :
Answer:
[tex]\frac{d^2y}{dx^2} = \frac{-300y^2}{(4y^3-11)^3}[/tex]
Step-by-step explanation:
Given the expression [tex]y^4+5x=11y[/tex], we are to find the second derivative [tex]\frac{d^2y}{dx^2}[/tex]
This differentiation will be implicit (indirect) as shown:
[tex]4y^3 \frac{dy}{dx} + 5 = 11\frac{dy}{dx} \\4y^3 \frac{dy}{dx} - 11 \frac{dy}{dx} = -5\\\frac{dy}{dx}(4y^3-11) = -5\\\frac{dy}{dx} = \frac{-5}{4y^3-11}[/tex]
Differentiating the second time using quotient rule:
[tex]\frac{d^2y}{dx^2} = \frac{4y^3-11 (0)- (-5)12y^2\frac{dy}{dx} }{(4y^3-11)^2} \\\\\frac{d^2y}{dx^2} = \frac{60y^2\frac{dy}{dx} }{(4y^3-11)^2} \\\\\frac{d^2y}{dx^2} = \frac{60y^2(\frac{-5}{4y^3-11} ) }{(4y^3-11)^2}\\\\\frac{d^2y}{dx^2} = \frac{-300y^2}{(4y^3-11)^3}[/tex]