Let be a continuous random variable that follows a normal distribution with a mean of and a standard deviation of . Find the value of so that the area under the normal curve to the right of is . Round your answer to two decimal places.

Answer :

Complete Question

Let x be a continuous random variable that follows a normal distribution with a mean of 550 and a standard deviation of 75.

a

Find the value of x so that the area under the normal curve to the left of x is .0250.

b

Find the value of x so that the area under the normal curve to the right ot x is .9345.

Answer:

a

  [tex]x = 403[/tex]

b

 [tex]x = 436.75[/tex]

Step-by-step explanation:

From the question we are told that

   The  mean is  [tex]\mu = 550[/tex]

   The standard deviation is  [tex]\sigma = 75[/tex]

Generally the value of x so that the area under the normal curve to the left of x is 0.0250 is mathematically represented as

     [tex]P( X < x) = P( \frac{x - \mu }{ \sigma} < \frac{x - 550 }{75 } ) = 0.0250[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

     [tex]P( X < x) = P( Z < z ) = 0.0250[/tex]

Generally the critical value of  0.0250 to the left  is  

       [tex]z = -1.96[/tex]

=>    [tex]\frac{x- 550 }{75} = -1.96[/tex]

=>    [tex]x = [-1.96 * 75 ]+ 550[/tex]      

=>    [tex]x = 403[/tex]

Generally  the value of x so that the area under the normal curve to the right of x is 0.9345 is mathematically represented as

        [tex]P( X < x) = P( \frac{x - \mu }{ \sigma} < \frac{x - 550 }{75 } ) = 0.9345[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

     [tex]P( X < x) = P( Z < z ) = 0.9345[/tex]

Generally the critical value of  0.9345 to the right  is  

       [tex]z = -1.51[/tex]

=>    [tex]\frac{x- 550 }{75} = -1.51[/tex]

=>    [tex]x = [-1.51 * 75 ]+ 550[/tex]      

=>    [tex]x = 436.75[/tex]

   

     

Other Questions