Answer :

Space

Answer:

(i) √23

(ii) 196√23

General Formulas and Concepts:

Pre-Algebra

  • Order of Operations: BPEMDAS

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Step-by-step explanation:

Step 1: Define

Standard Form:   x² - 10x + 2 = 0

Step 2: Define variables

a = 1

b = -10

c = 2

Step 3: Find roots

  1. Substitute:                    [tex]x=\frac{10\pm\sqrt{(-10)^2-4(1)(2)} }{2(1)}[/tex]
  2. Exponents:                   [tex]x=\frac{10\pm\sqrt{100-4(1)(2)} }{2(1)}[/tex]
  3. Multiply:                        [tex]x=\frac{10\pm\sqrt{100-8} }{2}[/tex]
  4. Subtract:                       [tex]x=\frac{10\pm\sqrt{92} }{2}[/tex]
  5. Simplify:                        [tex]x=\frac{10\pm 2\sqrt{23} }{2}[/tex]
  6. Factor:                          [tex]x=\frac{2(5\pm \sqrt{23}) }{2}[/tex]
  7. Divide:                          [tex]x=5\pm \sqrt{23}[/tex]

Step 4: Define roots

α > β

α = 5 + √23

β = 5 - √23

Step 5: Evaluate

i

  1. Substitute:                    [tex]\frac{1}{5-\sqrt{23} } -\frac{1}{5+\sqrt{23} }[/tex]
  2. Subtract:                      [tex]\sqrt{23}[/tex]

ii

  1. Substitute:                    [tex](5+\sqrt{23})^3-(5-\sqrt{23})^3[/tex]
  2. Evaluate:                       [tex](98\sqrt{23} +470)-(470 - 98\sqrt{23} )[/tex]
  3. Subtract:                       [tex]196\sqrt{23}[/tex]
mhanifa

Answer:

  • (i) √23
  • (i) 196√23

Step-by-step explanation:

Given equation:

  • x² - 10x + 2 = 0

Roots are:

  • α and β

Sum of the roots:

  • α + β = -b/a ⇒ α + β = -(-10)/1  ⇒ α + β = 10

Product of the roots:

  • αβ = c/a ⇒ αβ = 2/1 ⇒ αβ = 2

Finding the following:

(i)

  • 1/β - 1/α =
  • (α - β)/αβ =
  • √(α - β)² / αβ =
  • √((α + β)² - 4αβ) / αβ =
  • √(10² - 4*2) / 2 =
  • √92 / 2 =
  • 2√23 / 2 =
  • √23

(ii)

  • α³ - β³ =
  • (α - β)(α² + αβ + β²) =
  • √(α - β)²× ((α + β)² - αβ)
  • √((α + β)² - 4αβ) × ((α + β)² - αβ) =
  • √(10² - 4*2) × (10² -2) =
  • √92 × 98 =
  • 2√23 × 98 =
  • 196√23

Other Questions