A monatomic ideal gas with volume 0.230 L is rapidly compressed, so the process can be considered adiabatic. If the gas is initially at 1.01 105 Pa and 3.00 102 K and the final temperature is 489 K, find the work done by the gas on the environment, Wenv.

Answer :

Answer:

The value is  [tex]W = - 17.53 \ J[/tex]    

Explanation:

From the question we are told that

     The volume is  [tex]V = 0.230 \ L = 0.230 *10^{-3} \ m^{-3}[/tex]

      The initial  pressure is  [tex]P_1 = 1.01105 \ Pa[/tex]

      The initial  temperature is  [tex]T_1 = 3.00*10^2 \ K[/tex]

       The final temperature is  [tex]T_2 = 489 \ K[/tex]

 Generally for an adiabatic process the workdone is mathematically represented as

                [tex]W = - \Delta U[/tex]

Here  [tex]\Delta U[/tex] is the internal energy of the system which is mathematically represented as

                [tex]\Delta U = \frac{3}{2} * nR \Delta T[/tex]

So      

               [tex]W = - \frac{3}{2} * nR \Delta T[/tex]

Generally from ideal gas equation we have that

               [tex]n = \frac{P_1V }{ RT_1 }[/tex]

Here  R is the gas constant with value  [tex]R = 8.314 J/mol\cdot K[/tex]

So

                 [tex]n = \frac{1.01 *0^{5} * 0.230 *10^{-3}}{ 8.314 * 3.0*10^2 }[/tex]

=>              [tex]n = 0.009313 \ mol[/tex]

So  

                 [tex]W = - \frac{3}{2} * 0.009313 * 8.314 * (451 - 3.00*10^2)[/tex]    

=>             [tex]W = - 17.53 \ J[/tex]    

           

     

Other Questions