Answer :

Answer:

[tex]\frac{1}{5}[/tex]  is the common ratio

Step-by-step explanation:

Common ratio(r) states that the ratio of each term of a geometric sequence to the term preceding it.

[tex]r = \frac{a_2}{a_1} =\frac{a_3}{a_2}........\frac{a_{n+1}}{a_n}[/tex]

Given the sequence:

225, 45, 9, .........

Here,

[tex]a_1 = 225[/tex]

[tex]a_2 = 45[/tex]

[tex]a_3 = 9[/tex] and so on...

Using definition to find r.

[tex]r = \frac{45}{225}=\frac{9}{45}......[/tex]

After solving we get;

[tex]r = \frac{1}{5}[/tex]

Therefore, the common ratio is, [tex]\frac{1}{5}[/tex]

lublana

Answer:

[tex]r=\frac{1}{5}[/tex]

Step-by-step explanation:

We are given that a geometric sequence

225,45,9,...

We have to find the common ratio of the geometric sequence.

[tex]a=225,a_2=45,a_3=9[/tex]

[tex]r=\frac{a_2}{a_1}[/tex]

[tex]a_2=ar[/tex]

Substitute the values then we get

[tex]45=225r[/tex]

[tex]r=\frac{45}{225}[/tex]

[tex]r=\frac{1}{5}[/tex]

Hence, the common ratio of the geometric sequence =[tex]\frac{1}{5}[/tex]

Other Questions