The sum of angles in a polygon adds up to 180(n - 2), where n is the number of sides of the polygon
The measure of angle B is 141 degrees
The angles are given as:
[tex]\mathbf{\angle BCD = 148}[/tex]
[tex]\mathbf{\angle D EF = 142}[/tex]
[tex]\mathbf{\angle EFG = 130}[/tex]
[tex]\mathbf{\angle FGA = 129}[/tex]
[tex]\mathbf{\angle GAB = 120}[/tex]
[tex]\mathbf{\angle CDE = 90}[/tex]
So, the measure of angle B is calculated using:
[tex]\mathbf{\angle B + 148 + 142 + 130 + 129 + 120 + 90 = 180(n -2)}[/tex]
[tex]\mathbf{\angle B + 759 = 180(n -2)}[/tex]
Substitute 7 for n
[tex]\mathbf{\angle B + 759 = 180(7 -2)}[/tex]
[tex]\mathbf{\angle B + 759 = 180 \times 5}[/tex]
[tex]\mathbf{\angle B + 759 = 900}[/tex]
Make B the subject
[tex]\mathbf{\angle B = 900 - 759}[/tex]
[tex]\mathbf{\angle B = 141}[/tex]
Hence, the measure of angle B is 141 degrees
Read more about polygons at:
https://brainly.com/question/19023938