Answer :
If [tex]f(x) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex], then the value of [tex]f(8)[/tex] is [tex]f(8) = \frac{-93}{4480}[/tex].
What is Quadratic Equation?
A quadratic equation is an algebraic equation in the variable of the second degree. The quadratic equation is in the form of [tex]ax^{2} + bx + c = 0[/tex], where [tex]a,b,c[/tex] are the real numbers.
We have
[tex]f(x) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex]
According to Quadratic Equation,
[tex]f(x)=ax^{2} +bx+c[/tex]
And we have,
[tex]f(x) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex]
So,
[tex]f(8) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex]
i.e. putting [tex]x=8[/tex],
[tex]f(8) = \frac{1}{2(8)^2} - \frac{1}{4*8 +3}[/tex]
[tex]f(8) = \frac{1}{128} - \frac{1}{35}[/tex]
Solving the above part,
[tex]f(8) = \frac{ 35-128 }{ 128*35 }[/tex]
[tex]f(8) = \frac{-93}{4480}[/tex]
Hence, we can say that value of [tex]f(8) = \frac{-93}{4480}[/tex] .
To know more about Quadratic Equation click here
https://brainly.com/question/2263981
#SPJ2