Answer :

Answer:

27

Step-by-step explanation:

If  [tex]f(x) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex],  then the value of  [tex]f(8)[/tex] is  [tex]f(8) = \frac{-93}{4480}[/tex].

What is Quadratic Equation?

A quadratic equation is an algebraic equation in the variable of the second degree. The quadratic equation is in the form of [tex]ax^{2} + bx + c = 0[/tex], where [tex]a,b,c[/tex]  are the real numbers.

We have

[tex]f(x) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex]

According to Quadratic Equation,

[tex]f(x)=ax^{2} +bx+c[/tex]

And we have,

[tex]f(x) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex]

So,

[tex]f(8) = \frac{1}{2x^2} - \frac{1}{4x +3}[/tex]

i.e. putting [tex]x=8[/tex],

[tex]f(8) = \frac{1}{2(8)^2} - \frac{1}{4*8 +3}[/tex]

[tex]f(8) = \frac{1}{128} - \frac{1}{35}[/tex]

Solving the above part,

[tex]f(8) = \frac{ 35-128 }{ 128*35 }[/tex]

[tex]f(8) = \frac{-93}{4480}[/tex]

Hence, we can say that value of  [tex]f(8) = \frac{-93}{4480}[/tex] .

To know more about Quadratic Equation click here

https://brainly.com/question/2263981

#SPJ2

Other Questions