Answer :

xero099

Answer:

If [tex]g(x) = f(x+5)[/tex], then horizontal asymptote is the same.

Step-by-step explanation:

The graph represented in the figure is a hyperbola of the form:

[tex]y = \frac{A}{(x-k)} + B[/tex] (1)

Where:

[tex]x[/tex] - Indendent variable.

[tex]y[/tex] - Dependent variable.

[tex]k[/tex] - Horizontal coordinate where vertical asymtote goes through.

[tex]A, B[/tex] - Coefficients.

When [tex]x = k[/tex], the equation becomes undefined and vertical asymptote passes through [tex](x, y) = (k, 0)[/tex]. If [tex]x \to \pm \infty[/tex], then [tex]y \to B[/tex], coinciding with the horizontal asymptote.

The graph have the following parameters: [tex]k = 2[/tex], [tex]B = 3[/tex]. If [tex]g(x) = f(x+5)[/tex], then horizontal asymptote is the same.

Answer:

The graph of h(x) = g(x + 5) has

the same horizontal asymptote as function g

and

a vertical asymptote at x = -7

Step-by-step explanation:

${teks-lihat-gambar} Аноним

Other Questions