Answer:
If [tex]g(x) = f(x+5)[/tex], then horizontal asymptote is the same.
Step-by-step explanation:
The graph represented in the figure is a hyperbola of the form:
[tex]y = \frac{A}{(x-k)} + B[/tex] (1)
Where:
[tex]x[/tex] - Indendent variable.
[tex]y[/tex] - Dependent variable.
[tex]k[/tex] - Horizontal coordinate where vertical asymtote goes through.
[tex]A, B[/tex] - Coefficients.
When [tex]x = k[/tex], the equation becomes undefined and vertical asymptote passes through [tex](x, y) = (k, 0)[/tex]. If [tex]x \to \pm \infty[/tex], then [tex]y \to B[/tex], coinciding with the horizontal asymptote.
The graph have the following parameters: [tex]k = 2[/tex], [tex]B = 3[/tex]. If [tex]g(x) = f(x+5)[/tex], then horizontal asymptote is the same.