Answered

For the coming year, Cleves Company anticipates a unit selling price of $100, a unit variable cost of $60, and fixed costs of $480,000.

Required:
1. Compute the anticipated break-even sales in units.
2. Compute the sales (units) required to realize a target profit of $240,000.
3. Construct a cost-volume-profit chart, assuming maximum sales of 20,000 units within the relevant range. From your chart, indicate whether each of the following sales levels would produce a profit, a loss, or break-even.

$1,200,000 SelectBreak-evenLossProfitItem 3
$1,000,000 SelectBreak-evenLossProfitItem 4
$800,000 SelectBreak-evenLossProfitItem 5
$400,000 SelectBreak-evenLossProfitItem 6
$200,000 SelectBreak-evenLossProfitItem 7

4. Determine the probable income (loss) from operations if sales total 16,000 units.

Answer :

Solution :

1. The break even sales in units is given by :

   Break even sales in units = [tex]$\frac{\text{fixed cost}}{\text{contribution per unit}}$[/tex]

Where, contribution per unit = selling price per unit - variable cost per unit

The anticipated break even sales in units of Cleaves company in the coming year is :

Break even sales in units = [tex]$\frac{480,000}{40}$[/tex]

Contribution per unit = $ 100 - $ 60

                                   = $ 40

So the company anticipates its breakeven sales at 12,000 units.

2. In order tot earn profit the sales generated should overcome the breakeven point. The desired profit is $240,000, the sales required to earn the desired profit can be computed using the formula :

Desired sales in units = [tex]$\frac{\text{fixed cost + desired cost}}{\text{contribution per unit}}$[/tex]

                                    [tex]$=\frac{480,000+240,000}{40}$[/tex]

                                    = 18,000 units

Thus, the sales in units required to earn a profit of $ 240,000 are 18,000 units.

3. The sales in excess of the breakeven point would yield a profit on the contrary the sales below the breakeven point would result in a loss.

In the given sales in dollar =  breakeven sales in units x selling price per unit

                                           = 12,000 x 100

                                           = $ 1,200,000

∴ the sales above $1,200,000 would result in a profit whereas the sales below $1,200,000 would result in loss.

The cost volume profit chart below indicates the profit, loss, breakeven at different sales levels :

Sales levels           Result

1,200,000          Breakeven

1,000,000           Loss

800,000             Loss

400,000             Loss

200,000            Loss

4. The income on sale of 16,000 units is computed below :

Particulars                        Amount is $

Sales                                 1,600,000

Less : variable cost           960,000

Contribution                      640,000

Less : Fixed cost               480,000

Profit                                  160,000

Other Questions