Answer :
Answer:
h(4) = 0
Step-by-step explanation:
Hoping its ' kx '
[tex]h(x) = x^2 + kx -8 \\\\h(-1) = (-1)^2 + k(-1) - 8\\\\-5 = 1 - k -8\\\\-5 = -k -7\\\\-5 + 7 = -k\\\\2 = -k\\-2 = k[/tex]
Now we have k = -2. We will find h(4).
[tex]h(4) = (4)^2 + (-2)(4) - 8 = 16 -8 - 8 = 0[/tex]
Answer:
h(4) = 0
Step-by-step explanation:
GIVEN :-
- A quadratic function h(x) = x² + kx - 8
- h(-1) = -5
TO FIND :-
- Value of h(4)
SOLUTION :-
To find the value of h(4) , you need to find 'k' first by using the given facts.
[tex]h(-1) = (-1)^2 + k(-1) - 8 = -5[/tex]
[tex]=> 1 - k - 8 = -5[/tex]
[tex]=> -k - 7 = -5[/tex]
- Add both the sides by 7.
[tex]=> -k - 7 + 7 = -5 + 7[/tex]
[tex]=> -k = 2[/tex]
- Multiply both the sides by -1.
[tex]=> -k(-1) = 2(-1)[/tex]
[tex]=> k = -2[/tex]
Putting the value of k,
[tex]h(4) = (4)^2 + (-2)(4) - 8[/tex]
[tex]= 16 - 8 - 8[/tex]
[tex]= 16 - 16[/tex]
[tex]= 0[/tex]