Answer :
Answer:
[tex]P(A|B) = 1[/tex]
Step-by-step explanation:
Given
[tex]S = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}[/tex]
[tex]A = \{2,4,6,8,10,12,14\}[/tex]
[tex]P(A) = 7/15[/tex]
[tex]B = \{4,8,12\}[/tex]
[tex]P(B) = 3/15[/tex]
Required
[tex]P(A|B)[/tex]
This is calculated as:
[tex]P(A|B) = \frac{P(A\ n\ B)}{P(B)}[/tex]
Where
[tex]A\ n\ B = \{4,8,12\}[/tex]
[tex]P(A\ n\ B) = 3/15[/tex]
So, we have:
[tex]P(A|B) = \frac{P(A\ n\ B)}{P(B)}[/tex]
[tex]P(A|B) = \frac{3/15}{3/15}[/tex]
[tex]P(A|B) = 1[/tex]