Answer :
Answer:
A differential equation of the form: [tex]dy/dx = f(x, y)[/tex] is [tex]\frac{-x}{y+2}[/tex]
Step-by-step explanation:
Step 1 of 3
a) Acceleration[tex]$\rightarrow v^{\prime}(t)$[/tex]
velocity [tex]$\rightarrow v(t)$[/tex]
Given that [tex]$v^{\prime}(t) \propto v^{2}(t)$[/tex]
[tex]\frac{d v}{d t}=k v^{2}[/tex]
[tex]k[/tex] is proportionality constant.
Step 2 of 3
b) The population of Zootopia in year [tex]$t$[/tex], is [tex]$P(t)$[/tex]
Let [tex]$\beta$[/tex] the 'birth rate of Animals and [tex]$\delta$[/tex] the death rate of the population.
Then the population model is
[tex]\frac{d p}{d t}=(\beta-\delta) P$[/tex]
Given that [tex]$\beta=50000$[/tex] and
[tex]$\delta=40000$[/tex]
So, [tex]$\frac{d P}{d t}=10000 P$[/tex]
Step 3 of 3
c) First we take the derivative of [tex]$f(x)$[/tex] i. e [tex]$f^{\prime}(x)$[/tex].
The evaluate it at [tex]$m_{1}=f^{\prime}(2)[/tex]
[tex]m_{2}=\frac{-1}{f^{\prime}(2)}$[/tex]
The normal line with slope [tex]$\frac{-1}{f^{\prime}(2)}$[/tex]
[tex]y-(-2)=\frac{-1}{f^{\prime}(2)}(x-0) \\[/tex]
[tex]y+2=\frac{-x}{f^{\prime}(2)}[/tex]
[tex]f^{\prime}(2)=\frac{f x}{(y+2)} \\[/tex]
[tex]&f^{\prime}(2)+\frac{x}{(y+2)}=0[/tex]
[tex]\frac{d y}{d x}=\frac{-x}{y+2}[/tex]