Answer :

Answer:

Step-by-step explanation:

Triangle 1:

Problem:

Find leg [tex]a[/tex] of a right triangle if hypotenuse [tex]c=10[/tex] and angle [tex]\alpha =25^o[/tex].

Solution:

[tex]a[/tex] ≈ [tex]4.2262[/tex]

Explanation:

To find leg [tex]a[/tex] use formula:

                                     [tex]\text{sin}(\alpha )=\frac{a}{c}[/tex]

After substituting [tex]\alpha =25^o[/tex] and [tex]c=10[/tex] we have:

                                           [tex]sin(25^o)=\frac{a}{10}\\0.4226=\frac{a}{10}\\a=0.4226\times10\\[/tex]

                                           [tex]a=4.2262[/tex]

Triangle 2:

Problem:

Find leg [tex]b[/tex] of a right triangle if leg [tex]a=4[/tex] and angle [tex]\alpha =20^o[/tex].

Solution:

[tex]b[/tex] ≈ [tex]10.9899[/tex]

Explanation:

To find leg [tex]b[/tex] use formula:

                                        [tex]\text{tan}(\alpha)=\frac{a}{b}[/tex]

After substituting [tex]\alpha =20^o[/tex] and [tex]a=4[/tex] we have:

                                                    [tex]tan(20^o)=\frac{4}{b}\\0.364=\frac{4}{b}\\b=\frac{4}{0.364}\\b =10.9899[/tex]

ering475
You need to use SOHCAHTOA.
Sin (opposite/hypotenuse)
Cos (adjacent/hypotenuse)
Tan (opposite/adjacent)

For the first photo, you would use
Tan( opposite/adjacent)
4/x = tan(20)
Then you just change the equation to have x on the side by itself.
(4)(tan20) = x
Then write that into the calculator.

For the second problem, you use
Sin(opposite/hypotenuse)
Sin(25)=x/10
Change the equation to have x by itself.
Sin(25)(10)=x
Then plug it into the calculator.

Other Questions