Answer :

In the given figure of circle, if RT = 90, SU = 25, and SO is perpendicular to RT, the length of the radius RO is 53.

In the given figure,

RT = 90

SU = 25

SO is perpendicular to RT.

Here, SO and RO are the radii of the circle and RT is a chord.

The length of the chord, RT is given as,

RT = 2 √(r² - d²)

Here, r is the radius and d is the distance of the chord RT from the center O.

Radius, r = RO and distance, d = OU

∴ RT = 2 √(RO² - OU²)

Substituting RT = 90 in the above equation, we get,

90 = 2 √[(RO)² - (OU)²]

√[RO)² - (OU)²]  = 45

(RO)² - (OU)² = 45²

(RO)² - (OU)² = 2025 ........... (1)

Now, OU = SO - SU   [From the figure]

⇒ OU = SO - 25

Substituting OU = SO - 25 in equation (1), we obtain,

(RO)² - (SO - 25)² = 2025

(RO)²- [(SO)² + (25)² - 2(SO)(25)] = 2025    [ ∵ (a-b)² = a²+b²-2ab ]

(RO)²- (SO)² - (25)² + 50(SO) = 2025 ........... (2)

Since, RO and SO both are the radii of the same circle, we have,

SO = RO

Thus, we can write equation (2), as follows,

⇒ (RO)² - (RO)² - (25)² + 50(RO) = 2025

⇒ -625 + 50RO = 2025

⇒ 50RO = 2025 + 625

⇒ RO = 2650/50

⇒ RO = 53

Hence, the length of the radius RO of the given circle is 53.

Learn more about a circle here:

https://brainly.com/question/11833983

#SPJ1

Other Questions