1) For what values of a and b will f(x) = x²-4/x-2, x < 2 ax² - bx +3, 2 < x < 3 2x - a+b, x ≥ 3 be continuous? Explain your reasoning using the three conditions of continuity. Use one sided limit in your explanation(s).​

Answer :

a = 1/2 and b = 1/2 are the values of a and b for the function f(x) to be continuous. This can be obtained by finding left hand limit(LHL) and right hand limit(RHL) for the function and equating them to find values of a and b.

Find values of a and b for the function f(x) to be continuous:

Here in the question it is given that,

  • f(x) =  x²- 4/x-2, x < 2

                 ax² - bx +3, 2 < x < 3

                 2x - a+b, x ≥ 3

We have to find values of a and b for the function f(x) to be continuous.

LHL,

[tex]\lim_{x \to \ 2^{-} } f(x) =f(2)[/tex]

[tex]\lim_{x \to \ 2^{-} } f(x) = a(2^{2} )-b(2)+3[/tex]

[tex]\lim_{x \to \ 2^{-} } f(x) = 4a-2b+3[/tex]

[tex]\lim_{x \to \ 2^{-} } \frac{x^{2}-4 }{x-2} = 4a-2b+3[/tex]

[tex]\lim_{x \to \ 2^{-} } \frac{(x+2)(x-2)}{x-2} = 4a-2b+3[/tex]

[tex]\lim_{x \to \ 2^{-} } x+2 = 4a-2b+3[/tex]

2+2 = 4a - 2b +3

4a - 2b = 1

RHL,

[tex]\lim_{x \to \ 2^{+} } f(x) = f(2)[/tex]

[tex]\lim_{x \to \ 2^{+} } f(x) = 2(2) -a+b[/tex]

[tex]\lim_{x \to \ 2^{+} } f(x) = 4-a+b[/tex]

[tex]\lim_{x \to \ 2^{+} } \frac{x^{2}-4 }{x-2} = 4-a+b[/tex]

[tex]\lim_{x \to \ 2^{+} } \frac{(x+2)(x-2) }{x-2} = 4-a+b[/tex]

[tex]\lim_{x \to \ 2^{+} }{x+2} = 4-a+b[/tex]

2+2 = 4 - a + b

a = b

⇒LHL = 4a - 2b = 1

4a - 2a = 1 (a = b)

2a = 1

a = 1/2 and b = 1/2

Hence a = 1/2 and b = 1/2 are the values of a and b for the function f(x) to be continuous.

Learn more about continuous function here:

brainly.com/question/21447009

#SPJ9

Other Questions