Answer :

The function f(g(x)) = 6/(6 - 7x) and g(f(x)) = 6(x - 7)/x

f(x)=x/x-7 and g(x)=6/x

a) Let's first find f(g(x)), substitute the value of g(x) into the variable x.

⇒ f(g(x)) = [tex]\frac{\frac{6}{x} }{\frac{6}{x} - 7 }[/tex]

⇒ f(g(x)) = [tex]\frac{\frac{6}{x} }{\frac{(6 - 7x)}{x} }[/tex]

⇒ f(g(x)) = [tex]\frac{6}{(6 - 7x)}[/tex]

f(g(x)) = 6/(6 - 7x)

b) Let's now find the g(f(x)), substitute the value of f(x) into the variable x.

⇒ g(f(x)) = [tex]\frac{6}{\frac{x}{(x - 7} }[/tex]

⇒ g(f(x)) = [tex]\frac{6(x - 7)}{x}[/tex]

g(f(x)) = 6(x - 7)/x

Hence, f(g(x)) = 6/(6 - 7x) and g(f(x)) = 6(x - 7)/x

For more questions on composite function, visit:

https://brainly.com/question/10687170

#SPJ9

Disclaimer: The question given on the portal is incomplete. Here is the complete question

Question: Let f(x)=x/x-7 and g(x)=6/x

Find the following functions:

a) f(g(x))

b) g(f(x))

Simplify your answers.

Other Questions