Answer :

To find the rate of change of its elevation we can derive the position function:

[tex]y=-\frac{1}{110}x^2+127[/tex][tex]y^{\prime}=\frac{d(y)}{dx}=d(-\frac{1}{110}x^2+127)/d(x)[/tex][tex]y^{\prime}=\frac{-1}{55}x[/tex]

The rate of change of its elvation when x=22 is

[tex]\frac{-1}{55}\cdot22=\frac{-22}{55}=\frac{-2}{5}=-0.4[/tex]

That represents the slope of the tangent line to the function at x=22.

${teks-lihat-gambar} VigneshE744280

Other Questions