Answer :
given:
There are given that the Borrowed is $30000.
Explanation:
To find the monthly amount, we need to use the formula:
[tex]R=\frac{P}{1-(i+1)^{-n}}[/tex]Where,
[tex]\begin{gathered} P=30000 \\ r=0.07 \\ m=12\text{ Thenn} \end{gathered}[/tex][tex]\begin{gathered} i=\frac{r}{m}=\frac{0.07}{12} \\ =0.0058 \end{gathered}[/tex]Ans,
[tex]\begin{gathered} n=mt=12(4) \\ =48 \end{gathered}[/tex]Then,
From the formula:
[tex]\begin{gathered} R=\frac{Pi}{1-(1+i)^{-n}} \\ R=\frac{30000(0.0058)}{1-(1+0.0058)^{-48}} \\ R=\frac{30,000(0.0058)}{1-(1.0058)^{-48}} \\ R=\frac{30000(0.0058)}{0.24} \\ R=725 \end{gathered}[/tex][tex]\begin{gathered} S.I=\frac{P\times r\times t}{100} \\ =\frac{30000\times7\times4}{100} \\ =4800 \end{gathered}[/tex]Final answer:
Hence, the monthly payment is $725 and the interest will be: $4800