Answer :
Step 1: Represent the information provided in a right-angled triangle
Let's get side JK. We will use the Pythagoras theorem to solve for this
[tex]\begin{gathered} |jk|^2=6.4^2+4.8^2 \\ |jk|^2=40.96+23.04 \\ |jk|^2=64 \\ |jk|=\sqrt[]{64} \\ |jk|=8 \end{gathered}[/tex]mm
Hence,
Triangle JKL is similar to triangle JMK
Therefore, the ratios of their corresponding sides are equal.
Thus,
[tex]\begin{gathered} \frac{KL}{4.8}=\frac{JK}{6.4} \\ \text{ Hence} \\ KL=\frac{4.8JK}{6.4} \\ KL=\frac{4.8\times8}{6.4}=6 \end{gathered}[/tex]Hence, side KL = 6

