Answer :

Answer:

The mean deviation for the set of data = 2

Explanation:

The given set of data is:

27, 30, 23, 25, 25.

The mean deviation formula for ungrouped data is:

[tex]MD=\frac{\sum_^|x-\mu|}{n}[/tex]

The sample size, n = 5

The mean, µ = (27 + 30 + 23 + 25 + 25)/5

µ = 130/5

µ = 26

[tex]\begin{gathered} \sum_^|x-\mu|=|27-26|+|30-26|+|23-26|+|25-26|+|25-26| \\ \\ \sum_^|x-\mu|=|1|+|4|+|-3|+|-1|+|-1| \\ \\ \sum_^|x-\mu|=1+4+3+1+1 \\ \\ \sum_^|x-\mu|=10 \end{gathered}[/tex]

The mean deviation is therefore:

[tex]\begin{gathered} MD=\frac{\sum_^|x-\mu|}{n} \\ \\ MD=\frac{10}{5} \\ \\ MD=2 \end{gathered}[/tex]

The mean deviation for the set of data = 2

Other Questions