Answer :
Answer:
The mean deviation for the set of data = 2
Explanation:The given set of data is:
27, 30, 23, 25, 25.
The mean deviation formula for ungrouped data is:
[tex]MD=\frac{\sum_^|x-\mu|}{n}[/tex]The sample size, n = 5
The mean, µ = (27 + 30 + 23 + 25 + 25)/5
µ = 130/5
µ = 26
[tex]\begin{gathered} \sum_^|x-\mu|=|27-26|+|30-26|+|23-26|+|25-26|+|25-26| \\ \\ \sum_^|x-\mu|=|1|+|4|+|-3|+|-1|+|-1| \\ \\ \sum_^|x-\mu|=1+4+3+1+1 \\ \\ \sum_^|x-\mu|=10 \end{gathered}[/tex]The mean deviation is therefore:
[tex]\begin{gathered} MD=\frac{\sum_^|x-\mu|}{n} \\ \\ MD=\frac{10}{5} \\ \\ MD=2 \end{gathered}[/tex]The mean deviation for the set of data = 2