Answer :
I am not 100% sure but I think the answer is C I hope I helped you and Good luck
Answer: C) ∠B = ∠B' = 57° and ∠C = ∠C' = 33°
Step-by-step explanation:
GIven:- In ΔABC, ∠A = 3x, ∠B = 2x - 3, and ∠C = x + 3.
In ΔA'B'C' ∠A' = 2x + 30, ∠B' = x + 27, and ∠C' = 1/2x + 18
By angle sum property in ΔABC
[tex]\Rightarrow3x+2x-3+x+3=180^{\circ}\\\Rightarrow6x=180^{\circ}\\\Rightarrow\ x=30^{\circ}[/tex]
⇒ ∠A =3(30)=90°
∠B=2(30)-3=57°
∠C=30+3=33°
By angle sum property in ΔA'B'C'
[tex]\Rightarrow2x+x+27+\frac{1}{2}x+18=180^{\circ}\\\Rightarrow\frac{7}{2}x+75=180^{\circ}\\\Rightarrow7x+150=180^{\circ}\\\Rightarrow7x=210^{\circ}\\\Rightarrow\ x=30^{\circ}[/tex]
∠A'=2(30)+30=90°
∠B'=30+27=57°
∠C'=[tex]\frac{1}{2}(30)+18=33^{\circ}[/tex]
therefore, C) ∠B = ∠B' = 57° and ∠C = ∠C' = 33° gives ΔABC∼ΔA'B'C by the AA criterion.