Answer:
a.Corresponding angles are congruent
Triangle sum theorem
Measure of angle AED is [tex]43^{\circ}[/tex].
Step-by-step explanation:
We are given that a right triangle ABC. D is the midpoint of side AB and Point E is the midpoint of side AC.
The measure of angle ADE=[tex]47^{\circ}[/tex]
In triangle ADE
[tex]\angle ADE=47^{\circ}, \angle DAE=90^{\circ}[/tex]
[tex]\angle ADE+\angle DAE+\angle AED=180^{\circ}[/tex]
By sum of angles of triangle property
[tex]47+90+\angle AED=180[/tex]
Substitute the given values
[tex]137+\angle AED=180[/tex]
[tex]\angle AED=180-137[/tex]
By subtraction property of equality
[tex]\angle AED=43^{\circ}[/tex]
[tex]\angle AED=\angle ECB[/tex]
Corresponding angles are congruent.
Therefore,[tex]\angle ECB=43^{\circ}[/tex].
Hence, option a is correct.
a. Corresponding angles are congruent
Triangle sum theorem
Measure of angle AED is [tex]43^{\circ}[/tex].